Overview

The main objective of the 2014 IEEE Change Detection Workshop (CDW-2014) is to challenge research teams from around the world to test their change and motion detection algorithms on the expanded and enhanced CDNET video dataset. Compared to CDW-2012, when the challenge included video sequences in 6 categories, the new dataset has been expanded by the addition of 5 new categories:

  • Challenging Weather (4 videos, winter weather conditions),
  • Low Frame-Rate (4 videos, frame-rate between 0.17 fps and 1 fps),
  • Night (6 videos, primarily with motor traffic at night),
  • PTZ (1 video with slow continuous camera pan, 1 video with intermittent pan, 1 video with a 2-position patrol-mode PTZ, 1 video with zoom-in/zoom-out),
  • Air Turbulence (4 videos showing air turbulence caused by heat),

In addition, whereas ground truths for all frames were made publicly available for the 2012 DATASET for testing and evaluation, in the 2014 DATASET, ground truths of only the first half of every video in the 5 new categories is made publicly available for testing. The evaluation will, however, be across all frames for all the videos (both new and old) as in CDW-2012. This will, we hope, reduce the possibility of overtuning algorithm parameters.

The videos have been selected to cover a wide range of detection challenges and are representative of typical visual data captured today in surveillance, smart environment, and video database scenarios. The dataset includes a comprehensive set of carefully manually-annotated ground-truth motion areas to enable a precise quantitative comparison and ranking of various algorithms. This dataset aims to provide a rigorous academic benchmarking facility for testing and validating existing and new algorithms for motion and change detection.

Several best-performing algorithms submitted to the workshop will be invited for both oral and poster presentation, while several more will be invited for poster presentation only. Papers in both oral and poster sessions will be published in the 2014 CVPR Workshop Proceedings. All submissions that meet minimum standards will be reported in the dataset on-line and in an overview-paper associated with the workshop. The workshop will also include an invited talk and a panel discussion involving a mix of prominent researchers from academia and industry to discuss the current state-of-the-art in motion and change detection algorithms as well as challenges to overcome.

Key Dates

  • 31 Mar (Mon) 07 Apr (Mon): Submission of short-paper (up to 4 pages) describing methodology and results.
  • 07 Apr (Mon) 11 Apr (Fri): Notification of acceptance.
  • 28 Apr (Mon): Submission of camera-ready paper.
  • To be determined: Early workshop registration deadline
  • 28 Jun (Sat): CDW-2014 workshop.
Workshop held in conjunction with CVPR-2014
June 28, 2014

Program

1:00 – 1:25 Opening remarks and description of the challenge
1:25 – 1:50 "A Fast Self-tuning Background Subtraction Algorithm"
   Bin Wang, Piotr Dudek
1:50 – 2:15 "Spectral-360: A Physics-Based Technique for Change Detection"
   Mohamed Sedky, Mansour Moniri, Claude C. Chibelushi
2:15 – 2:30 Break
2:30 – 2:55 "Change Detection with Weightless Neural Networks"
   Massimo De Gregorio, Maurizio Giordano
2:55 – 3:20 "Flexible Background SubtractionWith Self-Balanced Local Sensitivity"
   Pierre-Luc St-Charles, Guillaume-Alexandre Bilodeau, Robert Bergevin
3:20 – 3:50 Break
3:50 – 4:15 "Static and Moving Object Detection Using Flux Tensor with Split Gaussian Models"
   Rui Wang, Filiz Bunyak, Guna Seetharaman, Kannappan Palaniappan
4:15 – 4:40 Conclusion and future works

Rules of participation

  • Researchers from both the academia and the industry are welcome to submit results
  • The 2014 DATASET contains 11 video categories with 4 to 6 video sequences in each category. Results must be reported for each video of each category.
  • Only one set of tuning parameters should be used for all videos.
  • Numerical scores can be computed using Matlab or Python programs available under UTILITIES. Both programs take the output produced by an algorithm, the ground-truth, and a region-of-interest mask and compute performance metrics described on the 2014 RESULTS page.
  • In order for a method to be ranked on this website, upload your results via the 2014 UPLOAD page.
  • Methods published in the past can be submitted as long as extensive evaluation over all 11 video categories is performed.

Paper submission

  • Prospective authors are invited to submit short papers, up to 4 pages long, describing methodology and results, including figures, tables, and references, by the due date (please see Key Dates above) at the CDW-2014 submission site (Microsoft CMT)
  • Each submission must be formatted for double-blind review using one of the templates available at the CVPR 2014 Author Guidelines page
  • Submissions not using the above templates or disclosing identity of the authors will be rejected without review.
  • Each submission will be peer-reviewed by at least two experts.
  • Methods published in the past can be submitted as long as extensive evaluation over all 11 video categories is performed.
  • A paper submission implies that, if the paper is accepted, one of the authors, or a proxy, will present the paper at the workshop.
  • CDW-2014 has adopted a double-blind review procedure, i.e., the identity of authors is hidden from reviewers and vice versa. Therefore, it is essential that authors remain anonymous in the submitted paper. Please be sure to read the instructions below and those in the templates.
  • Please follow these instructions to assure author anonymity. First, an author must register on the submission site and enter paper title and abstract to generate a "Paper ID". This "Paper ID" must replace author names and affiliations in the paper. Secondly, there must be no identifiable self-references in paper content. Many authors misunderstand the concept of anonymizing for blind review. Blind review does not mean that one must remove citations to one’s own work - in fact it is often impossible to review a paper unless the previous citations are known and available. Blind review means that you do not use the words “my” or “our” when citing your previous work. Also, avoid providing information that may identify the authors in the acknowledgments (e.g., co-workers and grant IDs). Avoid providing links to websites that identify the authors. If a paper is accepted, the final version can (and should) include such self-references.

Organizers

Acknowledgment

The 2012 dataset, original website and utilities associated with this benchmarking facility wound not have materialized without the tireless efforts of Masters student Nil Goyette at Université de Sherbrooke nil.goyette@USherbrooke.ca who has given his heart and soul to this marathon undertaking. We would also like to recognize the following individuals for their contributions to this effort:

  • Yi Wang, University of Sherbrooke, Canada
    Webmaster, software developer, captured footage, helped with ground truthing
  • Nil Goyette, University of Sherbrooke, Canada
    Former webmaster, software developer, captured footage, helped with ground truthing
  • Yannick Bénézeth, Université de Bourgogne, France
    Provided video footage, helped with ground truth
  • Dotan Asselmann, Tel Aviv University, Israel
    Provided every video in the Turbulence category, helped with ground truthing
  • Shaozi Li, Weiyuan Zhuang, and Yaping You, University of Xiamen, China
    Helped with ground truthing
  • Luke Sorenson and Lucas Liang, Boston University, USA
    Helped with ground truthing
  • Marc Vandroogenbroeck, Université de Liège, Belgium
    Provided video footage
  • Oognet.pl, ul. Inżynierska 403-422 Warszawa, Poland
    Provided video footage

Results (June 28, 2014)

Results, all categories combined.

Click on method name for more details.

Method Average ranking across categories Average ranking Average     Re  Average     Sp  Average   FPR  Average   FNR  Average   PWC     Average     F-Measure  Average   Precision 
GMM | Zivkovic [5] 10.27 10.71 0.6604 0.9725 0.0275 0.3396 3.9953 0.5566 0.5973
Mahalanobis distance [6] 9.18 8.29 0.1644 0.9931 0.0069 0.8356 3.4750 0.2267 0.7403
Bin Wang Apr 2014 [11] 6.18 6.14 0.7035 0.9794 0.0206 0.2965 2.9009 0.6577 0.7163
Multiscale Spatio-Temporal BG Model [13] 11.45 12.00 0.6621 0.9542 0.0458 0.3379 5.5456 0.5141 0.5536
SuBSENSE [14] 2.36 2.43 0.8070 0.9884 0.0116 0.1930 1.8416 0.7331 0.7463
CwisarDH [7] 3.55 4.57 0.6608 0.9948 0.0052 0.3392 1.5273 0.6812 0.7725
Spectral-360 [8] 4.55 4.86 0.7345 0.9861 0.0139 0.2655 2.2722 0.6732 0.7054
FTSG (Flux Tensor with Split Gaussian mdoels)) [9] 1.73 2.14 0.7657 0.9922 0.0078 0.2343 1.3763 0.7283 0.7696
Euclidean distance [1] 12.91 12.29 0.6803 0.9449 0.0551 0.3197 6.5423 0.5161 0.5480
KDE - ElGammal [2] 8.55 9.71 0.7375 0.9519 0.0481 0.2625 5.6262 0.5688 0.5811
KNN [3] 6.73 7.43 0.6650 0.9802 0.0198 0.3350 3.3200 0.5937 0.6788
SC_SOBS [10] 7.55 7.57 0.7621 0.9547 0.0453 0.2379 5.1498 0.5961 0.6091
CP3-online [12] 9.91 8.43 0.7225 0.9705 0.0295 0.2775 3.4318 0.5805 0.5559
GMM | Stauffer & Grimson [4] 9.36 8.43 0.6846 0.9750 0.0250 0.3154 3.7667 0.5707 0.6025

Results, for the bad weather category.

Click on method name for more details.

Method Average ranking Average     Re  Average     Sp  Average   FPR  Average   FNR  Average   PWC     Average     F-Measure  Average   Precision 
GMM | Zivkovic [5] 8.14 0.6863 0.9978 0.0022 0.3137 0.7707 0.7406 0.8138
Mahalanobis distance [6] 8.29 0.1749 1.0000 0.0000 0.8251 1.2575 0.2212 0.9975
Bin Wang Apr 2014 [11] 4.43 0.6661 0.9990 0.0010 0.3339 0.6164 0.7673 0.9169
Multiscale Spatio-Temporal BG Model [13] 12.86 0.5964 0.9892 0.0108 0.4036 1.6752 0.6371 0.7680
SuBSENSE [14] 3.00 0.8100 0.9989 0.0011 0.1900 0.4671 0.8528 0.9051
CwisarDH [7] 8.29 0.6288 0.9986 0.0014 0.3712 0.7475 0.6837 0.8762
Spectral-360 [8] 7.00 0.7032 0.9977 0.0023 0.2968 0.6804 0.7569 0.8211
FTSG (Flux Tensor with Split Gaussian mdoels)) [9] 2.29 0.7457 0.9991 0.0009 0.2543 0.5109 0.8228 0.9231
Euclidean distance [1] 9.14 0.5567 0.9987 0.0013 0.4433 0.7824 0.6701 0.8846
KDE - ElGammal [2] 7.57 0.6941 0.9975 0.0025 0.3059 0.7192 0.7571 0.8486
KNN [3] 5.43 0.6537 0.9990 0.0010 0.3463 0.6475 0.7587 0.9114
SC_SOBS [10] 10.86 0.5676 0.9976 0.0024 0.4324 0.8606 0.6620 0.8434
CP3-online [12] 8.71 0.8365 0.9934 0.0066 0.1635 0.9364 0.7485 0.7001
GMM | Stauffer & Grimson [4] 9.00 0.7181 0.9971 0.0029 0.2819 0.7905 0.7380 0.7704

Results, for the low framerate category.

Click on method name for more details.

Method Average ranking Average     Re  Average     Sp  Average   FPR  Average   FNR  Average   PWC     Average     F-Measure  Average   Precision 
GMM | Zivkovic [5] 7.00 0.5300 0.9970 0.0030 0.4700 1.3620 0.5065 0.6686
Mahalanobis distance [6] 8.14 0.0538 0.9999 0.0001 0.9462 2.5114 0.0797 0.7612
Bin Wang Apr 2014 [11] 11.29 0.5226 0.9911 0.0089 0.4774 2.2069 0.4689 0.5937
Multiscale Spatio-Temporal BG Model [13] 12.00 0.6057 0.9608 0.0392 0.3943 4.7581 0.3365 0.2917
SuBSENSE [14] 4.00 0.8399 0.9944 0.0056 0.1601 0.9644 0.6437 0.6122
CwisarDH [7] 5.43 0.6738 0.9951 0.0049 0.3262 1.0435 0.6406 0.6399
Spectral-360 [8] 5.29 0.7515 0.9941 0.0059 0.2485 0.8964 0.6437 0.5946
FTSG (Flux Tensor with Split Gaussian mdoels)) [9] 3.57 0.7517 0.9963 0.0037 0.2483 1.1823 0.6259 0.6550
Euclidean distance [1] 10.14 0.5914 0.9868 0.0132 0.4086 2.2419 0.5015 0.6152
KDE - ElGammal [2] 6.86 0.7000 0.9931 0.0069 0.3000 1.3124 0.5478 0.6245
KNN [3] 5.57 0.6290 0.9957 0.0043 0.3710 1.1869 0.5491 0.6865
SC_SOBS [10] 9.29 0.7874 0.9577 0.0423 0.2126 4.7727 0.5463 0.5272
CP3-online [12] 9.86 0.6810 0.9854 0.0146 0.3190 2.1756 0.4742 0.5263
GMM | Stauffer & Grimson [4] 6.57 0.5823 0.9961 0.0039 0.4177 1.2951 0.5373 0.6894

Results, for the night videos category.

Click on method name for more details.

Method Average ranking Average     Re  Average     Sp  Average   FPR  Average   FNR  Average   PWC     Average     F-Measure  Average   Precision 
GMM | Zivkovic [5] 8.57 0.4797 0.9739 0.0261 0.5203 4.7227 0.3960 0.4231
Mahalanobis distance [6] 6.71 0.0825 0.9978 0.0022 0.9175 3.7362 0.1374 0.6914
Bin Wang Apr 2014 [11] 11.57 0.5890 0.9375 0.0625 0.4110 7.8383 0.3802 0.3818
Multiscale Spatio-Temporal BG Model [13] 9.00 0.5773 0.9574 0.0426 0.4227 5.8859 0.4164 0.4270
SuBSENSE [14] 2.00 0.6262 0.9779 0.0221 0.3738 3.7145 0.5390 0.5168
CwisarDH [7] 7.00 0.4076 0.9852 0.0148 0.5924 3.9853 0.3735 0.5021
Spectral-360 [8] 4.14 0.6237 0.9739 0.0261 0.3763 4.4642 0.4832 0.4610
FTSG (Flux Tensor with Split Gaussian mdoels)) [9] 4.00 0.6107 0.9759 0.0241 0.3893 4.0052 0.5130 0.4904
Euclidean distance [1] 10.14 0.4913 0.9653 0.0347 0.5087 5.5378 0.3859 0.4168
KDE - ElGammal [2] 8.29 0.5914 0.9640 0.0360 0.4086 5.2735 0.4365 0.4036
KNN [3] 7.71 0.5413 0.9691 0.0309 0.4587 4.9813 0.4200 0.4298
SC_SOBS [10] 7.14 0.6496 0.9515 0.0485 0.3504 6.1567 0.4503 0.4241
CP3-online [12] 10.14 0.6221 0.9381 0.0619 0.3779 7.6963 0.3919 0.3410
GMM | Stauffer & Grimson [4] 8.57 0.5261 0.9701 0.0299 0.4739 4.9179 0.4097 0.4128

Results, for the ptz category.

Click on method name for more details.

Method Average ranking Average     Re  Average     Sp  Average   FPR  Average   FNR  Average   PWC     Average     F-Measure  Average   Precision 
GMM | Zivkovic [5] 9.57 0.6111 0.8330 0.1670 0.3889 16.9493 0.1046 0.0683
Mahalanobis distance [6] 8.57 0.0398 0.9574 0.0426 0.9602 4.9260 0.0374 0.1311
Bin Wang Apr 2014 [11] 8.29 0.5161 0.8880 0.1120 0.4839 11.5906 0.1348 0.1895
Multiscale Spatio-Temporal BG Model [13] 9.86 0.7953 0.7282 0.2718 0.2047 27.1630 0.0364 0.0188
SuBSENSE [14] 3.86 0.8316 0.9418 0.0582 0.1684 5.9293 0.3185 0.2666
CwisarDH [7] 4.71 0.3363 0.9977 0.0023 0.6637 0.6847 0.3218 0.4824
Spectral-360 [8] 6.43 0.5047 0.9416 0.0584 0.4953 6.0771 0.3653 0.3265
FTSG (Flux Tensor with Split Gaussian mdoels)) [9] 3.57 0.6730 0.9770 0.0230 0.3270 2.5519 0.3241 0.2861
Euclidean distance [1] 10.71 0.7808 0.6614 0.3386 0.2192 33.8518 0.0395 0.0206
KDE - ElGammal [2] 10.14 0.8121 0.6761 0.3239 0.1879 32.3132 0.0365 0.0188
KNN [3] 6.86 0.6980 0.8823 0.1177 0.3020 11.9812 0.2126 0.1979
SC_SOBS [10] 8.43 0.8403 0.7126 0.2874 0.1597 28.6809 0.0409 0.0212
CP3-online [12] 5.57 0.6061 0.9711 0.0289 0.3939 3.1516 0.2660 0.1992
GMM | Stauffer & Grimson [4] 8.43 0.6475 0.8570 0.1430 0.3525 14.5321 0.1522 0.1185

Results, for the turbulence category.

Click on method name for more details.

Method Average ranking Average     Re  Average     Sp  Average   FPR  Average   FNR  Average   PWC     Average     F-Measure  Average   Precision 
GMM | Zivkovic [5] 9.14 0.7786 0.9886 0.0114 0.2214 1.2460 0.4169 0.3494
Mahalanobis distance [6] 9.00 0.3521 0.9972 0.0028 0.6479 0.5272 0.3359 0.6578
Bin Wang Apr 2014 [11] 4.57 0.6997 0.9997 0.0003 0.3003 0.1793 0.7545 0.8374
Multiscale Spatio-Temporal BG Model [13] 7.43 0.6796 0.9972 0.0028 0.3204 0.4151 0.5291 0.4926
SuBSENSE [14] 3.00 0.8118 0.9995 0.0005 0.1882 0.1348 0.8197 0.8398
CwisarDH [7] 5.14 0.6068 0.9997 0.0003 0.3932 0.1853 0.7227 0.8942
Spectral-360 [8] 6.71 0.8815 0.9859 0.0141 0.1185 1.4375 0.5429 0.4982
FTSG (Flux Tensor with Split Gaussian mdoels)) [9] 4.71 0.6109 0.9998 0.0002 0.3891 0.1987 0.7127 0.9035
Euclidean distance [1] 10.43 0.8340 0.9661 0.0339 0.1660 3.4759 0.4135 0.3565
KDE - ElGammal [2] 8.71 0.8492 0.9857 0.0143 0.1508 1.5119 0.4478 0.3908
KNN [3] 7.29 0.7682 0.9917 0.0083 0.2318 0.9506 0.5198 0.5117
SC_SOBS [10] 10.14 0.7277 0.9839 0.0161 0.2723 1.7286 0.4880 0.4955
CP3-online [12] 10.29 0.5732 0.9946 0.0054 0.4268 0.6797 0.3743 0.3711
GMM | Stauffer & Grimson [4] 8.43 0.7913 0.9882 0.0118 0.2087 1.2760 0.4663 0.4293

Results, for the baseline category.

Click on method name for more details.

Method Average ranking Average     Re  Average     Sp  Average   FPR  Average   FNR  Average   PWC     Average     F-Measure  Average   Precision 
GMM | Zivkovic [5] 11.29 0.8085 0.9972 0.0028 0.1915 1.3298 0.8382 0.8993
Mahalanobis distance [6] 8.86 0.3154 0.9991 0.0009 0.6846 2.8698 0.4642 0.9270
Bin Wang Apr 2014 [11] 8.29 0.8784 0.9973 0.0027 0.1216 0.9233 0.8813 0.8980
Multiscale Spatio-Temporal BG Model [13] 11.00 0.8137 0.9970 0.0030 0.1863 1.1478 0.8450 0.8870
SuBSENSE [14] 2.57 0.9622 0.9976 0.0024 0.0378 0.3821 0.9480 0.9346
CwisarDH [7] 4.29 0.8972 0.9980 0.0020 0.1028 0.5679 0.9145 0.9337
Spectral-360 [8] 6.43 0.9616 0.9968 0.0032 0.0384 0.4265 0.9330 0.9065
FTSG (Flux Tensor with Split Gaussian mdoels)) [9] 5.00 0.9513 0.9975 0.0025 0.0487 0.4766 0.9330 0.9170
Euclidean distance [1] 10.14 0.8385 0.9955 0.0045 0.1615 1.0260 0.8720 0.9114
KDE - ElGammal [2] 5.71 0.8969 0.9977 0.0023 0.1031 0.5499 0.9092 0.9223
KNN [3] 8.86 0.7934 0.9979 0.0021 0.2066 1.2840 0.8411 0.9245
SC_SOBS [10] 2.43 0.9327 0.9980 0.0020 0.0673 0.3747 0.9333 0.9341
CP3-online [12] 7.57 0.8501 0.9972 0.0028 0.1499 0.7725 0.8856 0.9252
GMM | Stauffer & Grimson [4] 12.57 0.8180 0.9948 0.0052 0.1820 1.5325 0.8245 0.8461

Results, for the dynamic background category.

Click on method name for more details.

Method Average ranking Average     Re  Average     Sp  Average   FPR  Average   FNR  Average   PWC     Average     F-Measure  Average   Precision 
GMM | Zivkovic [5] 8.71 0.8019 0.9903 0.0097 0.1981 1.1725 0.6328 0.6213
Mahalanobis distance [6] 9.43 0.1237 0.9988 0.0012 0.8763 1.1753 0.1798 0.7451
Bin Wang Apr 2014 [11] 4.00 0.9177 0.9956 0.0044 0.0823 0.4837 0.8436 0.7990
Multiscale Spatio-Temporal BG Model [13] 10.71 0.7392 0.9905 0.0095 0.2608 1.1365 0.5953 0.5515
SuBSENSE [14] 4.57 0.7872 0.9993 0.0007 0.2128 0.3837 0.8138 0.8768
CwisarDH [7] 4.00 0.8144 0.9985 0.0015 0.1856 0.3270 0.8274 0.8499
Spectral-360 [8] 5.43 0.7819 0.9992 0.0008 0.2181 0.3513 0.7766 0.8456
FTSG (Flux Tensor with Split Gaussian mdoels)) [9] 1.57 0.8691 0.9993 0.0007 0.1309 0.1887 0.8792 0.9129
Euclidean distance [1] 13.00 0.7757 0.9714 0.0286 0.2243 3.0095 0.5081 0.4487
KDE - ElGammal [2] 10.71 0.8012 0.9856 0.0144 0.1988 1.6393 0.5961 0.5732
KNN [3] 6.86 0.8047 0.9937 0.0063 0.1953 0.8059 0.6865 0.6931
SC_SOBS [10] 8.29 0.8918 0.9836 0.0164 0.1082 1.6899 0.6686 0.6283
CP3-online [12] 9.14 0.7260 0.9963 0.0037 0.2740 0.6613 0.6111 0.6122
GMM | Stauffer & Grimson [4] 8.57 0.8344 0.9896 0.0104 0.1656 1.2083 0.6330 0.5989

Results, for the camera jitter category.

Click on method name for more details.

Method Average ranking Average     Re  Average     Sp  Average   FPR  Average   FNR  Average   PWC     Average     F-Measure  Average   Precision 
GMM | Zivkovic [5] 10.00 0.6900 0.9665 0.0335 0.3100 4.4057 0.5670 0.4872
Mahalanobis distance [6] 7.57 0.2157 0.9976 0.0024 0.7843 3.4663 0.3358 0.8564
Bin Wang Apr 2014 [11] 5.86 0.6505 0.9938 0.0062 0.3495 1.9125 0.7107 0.8493
Multiscale Spatio-Temporal BG Model [13] 11.43 0.7171 0.9477 0.0523 0.2829 6.0218 0.5073 0.3979
SuBSENSE [14] 3.29 0.7495 0.9908 0.0092 0.2505 1.8282 0.7694 0.8116
CwisarDH [7] 2.57 0.7437 0.9931 0.0069 0.2563 1.7058 0.7886 0.8516
Spectral-360 [8] 6.43 0.6696 0.9906 0.0094 0.3304 2.0855 0.7142 0.8387
FTSG (Flux Tensor with Split Gaussian mdoels)) [9] 4.14 0.7717 0.9866 0.0134 0.2283 2.0787 0.7513 0.7645
Euclidean distance [1] 12.43 0.7115 0.9456 0.0544 0.2885 6.2957 0.4874 0.3753
KDE - ElGammal [2] 9.00 0.7375 0.9562 0.0438 0.2625 5.1349 0.5720 0.4862
KNN [3] 6.71 0.7351 0.9778 0.0222 0.2649 3.1104 0.6894 0.7018
SC_SOBS [10] 5.43 0.8113 0.9768 0.0232 0.1887 2.8794 0.7051 0.6286
CP3-online [12] 11.86 0.6629 0.9519 0.0481 0.3371 5.9333 0.5207 0.4562
GMM | Stauffer & Grimson [4] 8.29 0.7334 0.9666 0.0334 0.2666 4.2269 0.5969 0.5126

Results, for the intermittent object motion category.

Click on method name for more details.

Method Average ranking Average     Re  Average     Sp  Average   FPR  Average   FNR  Average   PWC     Average     F-Measure  Average   Precision 
GMM | Zivkovic [5] 9.00 0.5467 0.9712 0.0288 0.4533 5.4986 0.5325 0.6458
Mahalanobis distance [6] 11.57 0.1607 0.9780 0.0220 0.8393 8.0275 0.2290 0.5098
Bin Wang Apr 2014 [11] 3.00 0.7617 0.9866 0.0134 0.2383 2.7784 0.7211 0.7530
Multiscale Spatio-Temporal BG Model [13] 9.86 0.5661 0.9448 0.0552 0.4339 7.1430 0.4497 0.6016
SuBSENSE [14] 3.14 0.6679 0.9919 0.0081 0.3321 3.7722 0.6523 0.7975
CwisarDH [7] 5.43 0.5549 0.9911 0.0089 0.4451 4.6560 0.5753 0.7417
Spectral-360 [8] 6.57 0.5878 0.9835 0.0165 0.4122 5.3734 0.5609 0.7374
FTSG (Flux Tensor with Split Gaussian mdoels)) [9] 1.29 0.7813 0.9950 0.0050 0.2187 1.6329 0.7891 0.8512
Euclidean distance [1] 10.29 0.5919 0.9336 0.0664 0.4081 8.9975 0.4892 0.4995
KDE - ElGammal [2] 12.86 0.5035 0.9309 0.0691 0.4965 10.0695 0.4088 0.4609
KNN [3] 8.14 0.4617 0.9865 0.0135 0.5383 5.1370 0.5026 0.7121
SC_SOBS [10] 7.14 0.7237 0.9613 0.0387 0.2763 5.2207 0.5918 0.5896
CP3-online [12] 8.43 0.7826 0.8746 0.1254 0.2174 11.5284 0.6177 0.5631
GMM | Stauffer & Grimson [4] 8.29 0.5142 0.9835 0.0165 0.4858 5.1955 0.5207 0.6688

Results, for the shadow category.

Click on method name for more details.

Method Average ranking Average     Re  Average     Sp  Average   FPR  Average   FNR  Average   PWC     Average     F-Measure  Average   Precision  Average   FPR-S 
GMM | Zivkovic [5] 10.57 0.7774 0.9878 0.0122 0.2226 2.1908 0.7322 0.7232 0.5428
Mahalanobis distance [6] 8.43 0.2109 0.9980 0.0020 0.7891 3.6861 0.3353 0.8726 0.0644
Bin Wang Apr 2014 [11] 5.86 0.8297 0.9914 0.0086 0.1703 1.7537 0.8128 0.8098 0.4658
Multiscale Spatio-Temporal BG Model [13] 7.86 0.7824 0.9910 0.0090 0.2176 1.6933 0.7918 0.8130 0.5282
SuBSENSE [14] 2.86 0.9529 0.9910 0.0090 0.0471 1.0668 0.8890 0.8370 0.6150
CwisarDH [7] 3.86 0.8786 0.9910 0.0090 0.1214 1.2770 0.8581 0.8476 0.5547
Spectral-360 [8] 5.00 0.8898 0.9893 0.0107 0.1102 1.5682 0.8519 0.8187 0.5815
FTSG (Flux Tensor with Split Gaussian mdoels)) [9] 2.00 0.9214 0.9918 0.0082 0.0786 1.1305 0.8832 0.8535 0.5005
Euclidean distance [1] 12.00 0.8006 0.9783 0.0217 0.1994 2.8949 0.6786 0.6112 0.5763
KDE - ElGammal [2] 6.86 0.8541 0.9885 0.0115 0.1459 1.6844 0.8030 0.7660 0.6217
KNN [3] 8.14 0.7478 0.9916 0.0084 0.2522 2.0569 0.7468 0.7788 0.3979
SC_SOBS [10] 9.43 0.8502 0.9834 0.0166 0.1498 2.3000 0.7786 0.7230 0.6035
CP3-online [12] 11.86 0.7840 0.9832 0.0168 0.2160 2.5175 0.7037 0.6539 0.5914
GMM | Stauffer & Grimson [4] 10.29 0.7960 0.9871 0.0129 0.2040 2.1951 0.7370 0.7156 0.5352

Results, for the thermal category.

Click on method name for more details.

Method Average ranking Average     Re  Average     Sp  Average   FPR  Average   FNR  Average   PWC     Average     F-Measure  Average   Precision 
GMM | Zivkovic [5] 9.57 0.5542 0.9942 0.0058 0.4458 4.3002 0.6548 0.8706
Mahalanobis distance [6] 8.43 0.0786 0.9999 0.0001 0.9214 6.0413 0.1383 0.9932
Bin Wang Apr 2014 [11] 7.57 0.7071 0.9939 0.0061 0.2929 1.6264 0.7597 0.8514
Multiscale Spatio-Temporal BG Model [13] 11.86 0.4102 0.9929 0.0071 0.5898 3.9622 0.5103 0.8403
SuBSENSE [14] 6.57 0.8379 0.9889 0.0111 0.1621 1.6145 0.8184 0.8116
CwisarDH [7] 4.86 0.7268 0.9949 0.0051 0.2732 1.6199 0.7866 0.8786
Spectral-360 [8] 5.86 0.7238 0.9939 0.0061 0.2762 1.6337 0.7764 0.9114
FTSG (Flux Tensor with Split Gaussian mdoels)) [9] 3.00 0.7357 0.9960 0.0040 0.2643 1.1823 0.7768 0.9088
Euclidean distance [1] 10.29 0.5111 0.9907 0.0093 0.4889 3.8516 0.6313 0.8877
KDE - ElGammal [2] 6.00 0.6725 0.9955 0.0045 0.3275 1.6795 0.7423 0.8974
KNN [3] 7.86 0.4817 0.9970 0.0030 0.5183 4.3783 0.6046 0.9186
SC_SOBS [10] 6.71 0.6003 0.9957 0.0043 0.3997 1.9841 0.6923 0.8857
CP3-online [12] 7.57 0.8229 0.9894 0.0106 0.1771 1.6974 0.7917 0.7663
GMM | Stauffer & Grimson [4] 8.86 0.5691 0.9946 0.0054 0.4309 4.2642 0.6621 0.8652

Metrics :

  • Average ranking accross categories : (rank:Baseline + rank:Dynamic Background + rank:Camera Jitter + rank:Intermittent Object Motion + rank:Shadow + rank:Thermal) / 6
  • Average ranking : (rank:Recall + rank:Spec + rank:FPR + rank:FNR + rank:PWC + rank:FMeasure + rank:Precision) / 7
  • TP : True Positive
  • FP : False Positive
  • FN : False Negative
  • TN : True Negative
  • Re (Recall) : TP / (TP + FN)
  • Sp (Specficity) : TN / (TN + FP)
  • FPR (False Positive Rate) : FP / (FP + TN)
  • FNR (False Negative Rate) : FN / (TP + FN)
  • PWC (Percentage of Wrong Classifications) : 100 * (FN + FP) / (TP + FN + FP + TN)
  • F-Measure : (2 * Precision * Recall) / (Precision + Recall)
  • Precision : TP / (TP + FP)
  • FPR-S : Average False positive rate in hard shadow areas


References :

  • 1. Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger, "Comparative study of background subtraction algorithms", J. of Elec. Imaging, 19(3):1–12, 2010.
  • 2. A. Elgammal, D. Harwood, and L. Davis, "Non-parametric model for background subtraction", in Proc. Eur. Conf. on Computer Vision, Lect. Notes Comput. Sci. 1843, 751-767 2000.
  • 3. Z. Zivkovic and F. van der Heijden, "Efficient adaptive density estimation per image pixel for the task of background subtraction", Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006
  • 4. C. Stauffer and W. E. L. Grimson, "Adaptive background mixture models for real-time tracking", inProc. Int. Conf. on Computer Vi-sion and Pattern Recognition, Vol. 2, IEEE, Piscataway, NJ (1999).
  • 5. Z. Zivkovic, "Improved adaptive Gaussian mixture model for back-ground subtraction", in Proc. Int. Conf. Pattern Recognition, pp. 28-31, IEEE, Piscataway, NJ 2004.
  • 6. Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger, "Comparative study of background subtraction algorithms", J. of Elec. Imaging, 19(3):1–12, 2010.
  • 7. M. De Gregorio and M. Giordano, "Change Detection with Weightless Neural Networks", in proc of IEEE Workshop on Change Detection, 2014.
  • 8. M.Sedky, M.Moniri and C. C. Chibelushi, "Spectral-360: A physical-based technique for change detection", in proc of IEEE Workshop on Change Detection, 2014.
  • 9. R. Wang, F. Bunyak, G. Seetharaman and K. Palaniappan, "Static and Moving Object Detection Using Flux Tensor with Split Gaussian Models", in proc of IEEE Workshop on Change Detection, 2014.
  • 10. L. Maddalena, A. Petrosino, "The SOBS algorithm: what are the limits?", in proc of IEEE Workshop on Change Detection, CVPR 2012.
  • 11. B. Wang and P. Dudek, "A Fast Self-tuning Background Subtraction Algorithm", in proc of IEEE Workshop on Change Detection, 2014.
  • 12. Dong Liang, Shun'ichi Kaneko, "Improvements and Experiments of a Compact Statistical Background Model", arXiv:1405.6275.
  • 13. Xiqun Lu "A multiscale spatio-temporal background model for motion detection", ICIP 2014.
  • 14. P-L St-Charles, G-A Bilodeau and R. Bergevin, "Flexible Background Subtraction With Self-Balanced Local Sensitivity" in proc of IEEE Workshop on Change Detection, 2014.


The authors of the top performing method receiving a price from the workshop organizers. From left to right, Pierre-Marc Jodoin, Kannappan Palaniappan, Rui Wang, Fatih Porikli, and Guna Seetharaman.